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Polymerization of fluorinated and chlorinated acetylenes has
received little or no attention to date despite the potential for
discovery of new materials with unusual optical, electrical, and
chemical properties.1-6 The challenges of synthesizing and
handling the parent difluoro-, fluorochloro-, and dichloroacety-
lenes, which are notoriously explosive even at cryogenic tem-
peratures (in the case of fluorinated acetylenes)7-10 and pyrophoric
upon exposure to very small amounts of air,11-17 have probably
limited preparative work in the area. We report the preparation
and characterization of the first tractable polymeric materials
derived separately from difluoroacetylene, fluorochloroacetylene,
and dichloroacetylene.18,19

Cryogenic polymerization (or chemical vapor deposition onto
substrates) of highly unstable difluoroacetylene20 from -196 to
-95 °C leads to formation of a new fluorocarbon polymer
(polydifluoroacetylene; PDFA) with a bulk stoichiometry of
C1.00F0.93-0.97 measured by elemental analysis. This air-sensitive,
deep-red material has very different structural, spectroscopic, and
physical properties than those of well-known carbon monofluoride
materials derived from graphite and fluorine at high temperatures
(graphite fluorides).21-25 Angle-resolved X-ray photoelectron
spectroscopic (XPS) measurements on thin films deposited on
quartz indicate anF/C ratio which decreases toward the surface:

0.86(2), 0.89(2), and 0.96(2) at 20, 50, and 90 Å penetration
depths, respectively. High-resolution C1s XPS measurements
(Figure 1 top) indicate the material contains a distribution of
fluorocarbon structural moieties (2%π-π* shake-up satellite,
19% CF2, 43% CF, 25% Câ, 11% CHx; Câ ) beta shifted carbon),
suggestive that redox disproportionation occurs readily on the
pathway to forming the isolable metastable film. The peak at 293.5
eV could also be attributed to a small percentage of-CF3 groups,
but the red color and air sensitivity of the films support primary
assignment as aπ-π* shake-up satellite. The Câ peak is assigned
to nonhalogenated carbon atoms whose binding energies are
shifted due to vicinal halogen substitution (e.g. C-CX).26

Cryogenic polymerization of chlorofluoroacetylene leads to a
new polymer (polychlorofluoroacetylene; PCFA) which has a
stoichiometry of C2.00Cl1.01F1.00. Characterization of PCFA by
GPC, 13C NMR, 19F NMR, IR, and UV/vis spectroscopies
indicates that the highly polydisperse material (Mw/Mn ) 5.04
and 6.39 for two fractions with different chloroform solubility)
has a polyunsaturated chain structure composed primarily of
repeating-CFdCCl- units. The IR spectrum shows a relatively
intense set of CdC modes at 1673 and 1632 cm-1. A group of
broadened doublets around 150 ppm (1JC-F ) ca.270-280 Hz)
and a collection of overlapping broad resonances centered at 110.5
ppm are the only significant peaks observed in the13C NMR
spectrum (Figure 2).27 High-resolution C1s XPS measurements
on a pellet of the PCFA polymer (Figure 1 middle) indicate that
it contains a greater percentage of monohalosubstituted carbon
(2% π-π* shake-up satellite, 13% CX2, 36% CCl, 37% CF, 5%
Câ, 9% CHx) relative to the PDFA polymer, suggestive that redox
disproportionation occurs to a lesser extent.

Dichloroacetylene resists thermal polymerization in condensed
or gas phases. Polymerization of dichloroacetylene in benzene
(25 °C), catalyzed by MoCl5 gives a white insoluble solid (C1.00-
Cl0.99) in 94% yield.28-30 The spectroscopic properties of this air-
stable material are consistent with a nonplanar, polyunsaturated
backbone ofcis-dichloro stereochemistry at each double bond.31-33
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A pellet of the free-standing polymer shows no CX2 carbon by
C1s XPS (Figure 1 bottom) in contrast to the fluorinated polymers,
but still shows a strongπ-π* shake-up satellite.

Thermogravimetric studies on PDFA and PDCA show they
have comparable thermal stability under Ar, with a 10% mass
loss temperature for PDFA of 425°C versus 468°C for PDCA
(10 °C min-1 heating rate). While PDFA shows only a broad
exotherm associated with mass loss (predominantly C6F6), PDCA
demonstrates striking thermal behavior (Figure 3), exhibiting a
sharp exotherm centered at 413°C (1.46 kJ g-1) and a sharp
endotherm centered at 669°C (1.61 kJ g-1). Both peaks are
consistent with highly cooperative structural rearrangements or
phase transitions. The onset of mass loss beginning around 430
°C is coincident with a broad exotherm (667 J g-1) expected for
the observed reductive dechlorination of the parent polymer; a

noncrystalline carbon char (glassy carbon-like based on broad
Raman peaks at 1588 and 1349 cm-1)34 is obtained at temperatures
exceeding 400°C (in vacuo). Mass loss from PCFA (10% by
350 °C) is primarily in the form of (C-X)n chlorofluorocarbon
gases. Fluoro substitution on a polyunsaturated backbone clearly
favors kinetic pathways for decomposition that retain strong C-F
bonds and the C(+1) oxidation state.

Comparison of the UV/vis spectra of the three polymers shows
that a thin film of PDFA (freshly made) has significantly red-
shifted lowest energy absorbance values (λmax ≈ 269 and 340
nm with a very broad tail extending out to 630 nm) relative to a
solution of PCFA (λmax ) 292 nm in dichloromethane) and a thin
film of PDCA (λmax ) 220 and 270 nm). The presence of fluorine
in the polyunsaturated polymers not only red-shifts the electronic
spectra, but also significantly enhances the air and light sensitivity
relative to chlorine substitution.35

The structural, spectroscopic, and chemical properties of the
three polymers show that increasing fluorine substitution on the
acetylene monomers promotes structural rearrangement upon
polymerization and greatly enhances reactivity of the polymers
toward oxygen, water, and light.
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Figure 1. XPS C1s spectra (55° takeoff angle) for a PDFA thin film on
quartz (top), PCFA pellet (middle) and PDCA pellet (bottom). Peak fits
show the contribution of hydrocarbon (CHx), beta-shifted carbon (â-C),
carbon bonded to one halogen atom (CCl and CF), carbon bonded to
two halogen atoms (CX2 and CF2), and theπ-π* shake-up satellite (ss)
to the C1s spectrum for each sample.

Figure 2. 13C NMR spectrum (coupled to F) for the chloroform soluble
fraction of polychlorofluoroacetylene.

Figure 3. Overlaid TGA (top) and DSC (bottom) thermograms for
polydichloroacetylene.
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